Shedding Light on the Dark Sector With Neutrino Oscillations

Bryce Littlejohn University of Cincinnati 6/13/14

Three-Neutrino Oscillation Picture

- Consistent results from disparate experimental methods confirm three-neutrino mixing paradigm:
 - Three mass splittings observed
 - Observed oscillation to or from each active flavor: clear that 3x3 PMNS relates three mass states to three active neutrino states.
 - Have plenty of mass splittings to go around. Don't need any more!

$$P(\nu_a \to \nu_b) = \sin^2 2\theta \sin^2 \left[1.27 \Delta m^2 (eV^2) \frac{L(km)}{E_\nu(GeV)} \right]$$

$$U_{\mathrm{PMNS}} \approx \left(egin{array}{cccc} 0.820 & 0.554 & 0.146 \\ 0.482 & 0.528 & 0.699 \\ 0.310 & 0.644 & 0.699 \end{array}
ight)$$

Additional Mass Splittings, Sterile Neutrinos

- Numerous anomalous results in neutrino physics can be explained by oscillation via a fourth mass splitting
- Resort to 'sterile neutrinos' to mesh with Z mass peak width
- Sterile neutrinos look like different things to different people...
- Focus on hints of eV² steriles from neutrino oscillation experiments

Sterile Neutrinos

- eV: SBL Anomalies
- eV: $N_{\rm eff}$ (Cosmology, BBN), r-process
- eV: BICEP-2 and Planck
- \ll eV: missing upturn of P_{ee}^{\odot}
- keV: Warm Dark Matter
- TeV: Z-width, NuTeV
- 10¹⁰ GeV: Leptogenesis
- 10¹⁵ GeV: Seesaw Mechanism W. Rodejohann

Next Talk (K. Smith)

Summary slides in backup if you have questions here.

Hints For Alternate Δm^2 : $\nabla_{\mu} \rightarrow \nabla_{e}$

Ű

- LSND: Pion decay-at-rest ν
 μ beam (1990s)
- MiniBooNE experiments: decay-in-flight (2000-10s)
- Observed excess of ve-like interactions at L/E ~ 1 GeV/km, indicating appearance via oscillation, ~eV² mass splitting

Parameter	LSND	mBooNE
Bunch Width	600 us	1.6 us
Proton E	<1 GeV	8 GeV
Neutrino E	<50 MeV	>200 MeV
Interaction	Inverse Beta	Nuclear CCQE
Detector Type	Liquid Scint	Oil Cerenkov

For The Skeptics...

 10^{-1}

- Alternate (untested!) theories for appearance results exist
 - LSND detector is on-axis with a large duty factor: affected by not-understood beam-related products? Cosmic ray flux?
 - MiniBooNE: Really electrons? Or maybe gammas?
- Other experiments show null results at nearby Δm²

Hints For Alternate Δm^2 : $\nabla_e \rightarrow \nabla_e$

- 'Reactor anomaly': \sim 6% deficit in measured reactor $\overline{\nu}_e$ flux
 - Recently re-confirmed at Daya Bay (Neutrino 2014)
 - Also weak hints of spectral distortions at shortest baselines (ILL)
- 'Gallium anomaly': deficit in ν_e flux measured from large radioactive source
 - Observed with both Ar and Cr neutrino sources

For The Skeptics...

- Alternate (untested!) theories for disappearance results exist
 - How to model spectral shapes 10k+ reactor fission product beta branches, many of which are highly forbidden?
 - A. Hayes, et. al., PRL 112 (2014): Flux/spectral uncertainties more like 5%?
 - Hints of improper spectral modeling (Double Chooz, RENO, Neutrino 2014)
 - Decay rate to excited Cr, Ar states are also 'uncertain in uncertain ways'

Anomalous Results: A Consistent Picture

- LSND, MiniBooNE, reactor, and gallium data all point to a similar region of Δm^2 space: ~0.2-10 eV²
- Indicates that all anomalies could be caused by the same sterile neutrino(s)

For The Skeptics...

- No evidence of v_{μ} disappearance at these Δm^2
 - New, more sensitive null result from MINOS at Neutrino 2014
 - Combination of disappearance experiments highly disfavors regions suggested by anomalies
- 3+1 hypothesis does not even fit mBooNE data all that well...

A Path Forward

- Experimental evidence is clearly not sufficient to conclude that sterile neutrinos exist
- And yet, no single existing experimental result directly refutes the entirety of any of the existing anomalies.
- Need new direct tests of anomalies, v₅ hypothesis
 - $\nu_{\mu} \rightarrow \nu_{e}$: A new generation of SBL experiments in Fermilab Booster beamline
 - ν_e →ν_e: A new generation of radioactive source and SBL reactor experiments

PROSPECT Experimental Setup

CeSox Experimental Setup

Short-Baseline LArTPCs

 Interaction ionization drifted meters along uniform E-field toward finely spaced wire planes; 3D position from position + scintillation light timing

Short-Baseline LArTPCs

 Interaction ionization drifted meters along uniform E-field toward finely spaced wire planes; 3D position from position + scintillation light timing

Discriminate major MiniBooNE background, gammas, using vertex dE/dx and topology information

MicroBooNE: Status and Potential

- Constructed MicroBooNE TPC will be installed this month
- Commissioning in Fall 2014, beam data afterwards
- Designed to address MiniBooNE excess at 5σ CL
 - Electron/gamma dE/dx separation expected to be 90% or betterL
 - Discrimination ability demonstrated for first time in Argoneut data (Neutrino 2014)
 - Vertex topology information could further increase rejection factor

Fermilab Short-Baseline LArTPC Program

Proposals to install additional near LArTPC (LAr-ND), additional LArTPC (ICARUS) closer to oscillation maximum

Relative appearance measurement goes well beyond MicroBooNE in sensitivity

P5-endorsed plan encourages pre-LBNF US-Europe LAr collaboration, Demonstrate design principles for LBNF TPC

Short-Baseline Reactors: PROSPECT

- Need an MeV-scale short-baseline (SBL) probe of L/E behavior
 - · Absolute reactor flux checks are nice, but not good enough
- Research reactors provide a venue for oscillation searches at shortest-ever reactor baselines

Short-Baseline Reactors: PROSPECT

 Segmented scintillator detectors at short baselines from compact reactor core detect IBD e+ spectrum distortion with position

SBL Reactors: Sensitivity, Challenges

 Competing global efforts; complementary technologies for mitigating reactor, near-surface cosmogenic backgrounds

Short timescales for data-taking: 2015-2016 start dates

proposed for many efforts

 Potential to probe majority of suggested oscillation parameter space at high confidence level

 Low cost, high discovery potential (P5-recommended)

Prospect: Lithium-doped LS, with pulse-shape discrimination

STEREO: Large overburden, Gd-doped liquid scintillator

Short-Baseline Source: CeSOX

Ű

- $^{144}\text{Ce}\, \overline{\nu}_e$ source (0-3 MeV) produced at Mayak (Russia) by 2015
- Source deployed in tunnel 8.25 m underneath Borexino target in 2015
- 10,000 detected v_e in 1.5 years in un-altered Borexino detector
- Attempt to measure spectral distortion along with absolute flux deficit using calorimetric measurement
- Probe best-fit reactor anomaly space
- If something is seen, can optimize detector and/or deploy new source in closer location

Future v_µ Disappearance Measurements

Ë

- MINOS+: Higher energies, more statistics
- IceCube: Higher-energy atmospherics
- Combined ν_{μ} measurements at LAr1-ND, MicroBooNE, ICARUS cancels systematics
 - Not a direct test of existing anomalies, but still useful!

Other Developed Experiment Proposals

- IsoDAR: 10+ MeV $\overline{\nu}_e$ from cyclotron-produced beta decays
 - High-statistics, low-background, low-systematics measurement
 - High-intensity compact cyclotron technology under intense development
 - Funding source and host detector still TBD

- OscSNS: Redo LSND completely off-axis
 - Build new larger scintillating detector below grade in/near SNS facility
- NuSTORM: Oscillation search with muon storage ring source
 - Extremely high confidence level (<10sigma) test of appearance anomaly
 - \$100M+: Not recommended in P5 report

Summary

- Tantalizing hints support the existence of eV-scale ν_s
- A number of valid reasons to doubt the validity of these hints
- A diverse array of upcoming experiments will provide much-needed new data to conclusively resolve the issue

Thanks!

MicroBooNE: nue appearance data on the way!

Thoughts About 'Definitiveness'

- Definitive proof of sterile neutrinos? Definitive experiments?
 Definitive resolution of current anomalies?
- What metrics to consider when building/funding experiments?

My charge (From organizers)

J. Spitz, Neutrino 2014

I would like to invite you to give a critical review talk on future short baseline experiments at the 26th International Conference on Neutrino Physics and Astrophysics (Neutrino 2014)...

By short baseline, I mean the search for sterile neutrinos whose masses are well above the atmospheric mass scale. There appear to be many different proposals. I see one of main functions of this talk is to clarify which can be conclusive in confirming or refuting the present anomalies.

From Snowmass 2013 Executive Summary on Neutrinos, arXiv:1310.4340 [hep-ex]

- Definite resolution of the current short-baseline anomalies. These will (probably) require neutrino sources other than pion-decay-in-flight and the pursuit of different flavor-changing channels, including $\nu_{e,\mu}$ disappearance and $\nu_{\mu} \to \nu_{e}$ appearance, using a combination of reactor, radioactive source and accelerator experiments. In addition to small-scale dedicated experiments, such experiments can be carried out as part of R&D projects related to next-next generation neutrino beams (e.g., nuSTORM, IsoDAR).

Thoughts About 'Definitive' Experiments

- What do we mean by 'definitive' sterile neutrino results?
 - High-CL exclusion/acceptance of anomaly sterile neutrino parameter space
 - This is arguably already in existence (ν_μ disappearance): Kopp, et al: "In a 3+1 scheme the compatibility of appearance and disappearance data is at the level of 10-4"
 - After Neutrino2014 MINOS, etc. results, exclusion space via disappearance will only expand.
 - It seems, based on attitudes at Neutrino14, this is not a sufficient test (worrying, but not sufficient)
 - Directly reproduce existing anomalies using more sensitive experimental methods
 - Design experiments to investigate systematic weaknesses of previous experiments
 - Eventually, we would obviously want both of these
- Rather than stressing 'definitiveness' of individual experiments, focus on making new datasets available in short order that directly test the systematics assumptions of the anomalous results
- Joe Lykken: "We will never ever stop looking for steriles"
 - So easy to motivate theoretically, so much parameter space available

<< eV² Steriles

- MSW resonance in sun affects solar neutrino oscillations
- Non-standard resonance transition could be explained by new very light sterile neutrinos
- Also explained by other phenomena (mass varying neutrinos...?)

Dark Matter Searches

- Signature of Dark Matter annihilation to nu-nubar in Sun or galactic center, or elsewhere
- SuperK: no evidence of such a signature in ~GeV range

 Some evidence of ~keV signatures from sources using Xray astronomy

Reactor Oscillation Signature

Multiple detectors give better L/E coverage

Heeger, Mumm, BRL arXiv:1307.2859 (2013)

Example: 2m long detectors at 4 and 15 m closest distances to a 20 MW reactor

Error bars: Statistical unc.

Ability to distinguish existence of multiple sterile V

Error bars: Statistical unc.